
MfM 42:3

Introduction to
the Almost Periodic Functions of Bohr
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By Christian Berg

0. Introduction
The content of this paper was presented at the Centenary of Harald Bohr with the 
purpose of serving as an introduction for the many non-specialists present. It is our 
hope that this written version will incourage the reader to study the work of Harald 
Bohr. The collected mathematical works appeared in 1952, cf. [8], and at the occasion 
of the Centenary his mathematical papers with a pedagogical aim - written in Danish - 
have been published, cf. [9].

In the following we will concentrate on Bohr’s main results about almost periodic 
functions, but we shall briefly indicate how he was led to the theory and how it later 
merged into the theory of harmonic analysis on locally compact abelian groups. The 
so-called Bohr compactification of a group has become a standard concept in harmonic 
analysis.

The readers interested in a further study of almost periodic functions arc referred to 
the many monographs on the subject, e.g. Amcrio and Prouse [1 ], Besicovic [3], Bohr 
[7], Corduneanu [10], Maak [11], A complete bibliography on almost periodic func
tions from 1923 to march 1987 has been collected, see [13].

1. Background
Harald and the two years older brother Niels were sons of the professor of physiology 
Christian Bohr, and from their youth they felt veneration for science and were acquaint
ed with the scientists of the time. Harald began to study mathematics at the University 
of Copenhagen at the age of 17, and already in 1910 he defended his doctoral dis
sertation ([5]) on the summability theory of Dirichlet series, that is series of the form

(1)

where (ag is a sequence of complex coefficients, and z - x+iy is a complex variable. 
Jensen had shown i 1884 that there is an abscissa of convergence yQ such that (1) is 
convergent for x > yQ, divergent for x < yo.

Bohr showed that there is a decreasing sequence yQ > y > y > of abscissas of 
summability such that (1) is Cesåro summable of order r for x > y; but not for x < y
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Furthermore, the width w = y -y of the strip y < x < y ,, where the series is 
r *r-l 'r 11 r *1^1

summable of order r but not of order r-1, satisfies

1 > > ... . (2)

Bohr could furthermore show that the inequalities (2) were characteristic for the 
sequence of summability abscissas because, for given numbers yQ > y( > ... such that 
(2) holds, he constructed a Dirichlet series having these numbers as abscissas of 
summability. The sum of the series (1) is a holomorphic function yin the halfplane x > 
y . By the Cesåro summability f has a holomorphic continuation to the half-plane

the infimum of the numbers O'for which /Tas a holomorphic extension to the half-plane 
x > oc satisfying an estimate

1/Tx+zjJ I < T+lp-|ß,
where A Ji depend on (V.

About the same time the Hungarian mathematician Marcel Riesz had examined the 
summability theory of general Dirichlet series

(3) 

n=l

where (Å ) is a sequence of real numbers. Bohr had also considered this general case, 
but in the dissertation he restricted the investigations to the special case of Å - -log n.

As a result of his investigations on dirichlet series Bohr got into fruitful collaboration 
with Landau in Göttingen about the Riemann zeta function.

For a period of several years partially overlapping with the first world war Bohr was 
engaged in writing a treatise in Danish on mathematical analysis together with 
professor Mollerup. Bohr knew the famous Cours d’Analyse of Jordan from his years of 
study and he was very much influenced by it. The mathematical analysis textbook of 
Bohr and Mollerup should get an enormous influence on the teaching of mathematics 
in Denmark, and it was used from 1915 to the 1960’ies both at the University of 
Copenhagen and at the Technical University, although in revised editions. Further 
information about the life and work of Bohr can be found in his own lecture “Looking 
backwards” and in the memorial address by B. Jessen, both published in the collected 
mathematical works [8].

2. Almost periodic functions
It was after the completion of the mathematical analysis textbook that Bohr took up the 
investigations which should eventually lead to his main accomplishment, the theory of 
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almost periodic functions. The starting point was an attempt to characterize the 
functions f(z) which admit a representation by a Dirichlet scries (3).

On a vertical line z = this leads to the representation of a function f(xf-iy) of a 
real variable y as sum of a series

21
n=l

bf^ where bn

Such series comprise Fourier series for periodic functions with period p > 0 corres

ponding to Å = =^-n, n € Z. Bohr’s main contribution was to give an intrinsic cha

racterization of the class of functions f: R —> C which can be uniformly approximated 
by trigonometric polynomials,

n=l
(4)

where the frequences Å( can be arbitrary real numbers, and the coefficients a„ arbitrary 
complex numbers.

He proved that the uniform closure of the trigonomtric polynomials are those 
continuous functions which are almost periodic in a sense explained below.

If/: R —» C is a function of a real variable and £ > 0, then T e R is called a translation 
number or an almost period for/corresponding to £ if

|/fx+/-/fxj| < £ for all x e R.

A subset A <= R is called relatively dense in R, if there exists a sufficiently big number 
I > 0 such that every interval of length I contains at least one number from A.

Finally a continuous function/: R —> C is called almost periodic, if for every E > 0 the 
set {t (e)} of translation numbers for/corresponding to £ is relatively dense.

In other words, a continuous function  fis almost periodic if to every E > 0 there corresponds a 
number I - 1(e) >0 such that any interval of length I contains at least one number T such that

\f(x+x)-f(x)\ < £ for all x e R.

A continuous periodic function is almost periodic since a period p is a translation 
number corresponding to any £ > 0. If/ is an almost periodic function which is 
non-periodic, and if 1(e) denotes the smallest possible length corresponding to £ > 0, 
then 1(e) will increase to infinity as £ decreases to zero. In fact if 1(e) < I for all £ > 0, 
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then the interval [I,2/] contains a sequence (tJ such that r is a translation number 

corresponding to —. Any accumulation point for the sequence (t ) is a period forf.

The first basic result in the theory is easy to prove: An almost periodic function is 
uniformly continuous and bounded.

The set. Z.Z’of almost periodic functions is stable under addition and multiplication, 
so. Z.Z5 is an algebra of functions. More generally if^,...^ : R —> C are almost periodic 
and cp : A —> C is a continuous function defined on a subset A C" such that

closure { (fi(x),...,fn(x)) |x e R} C A.

then cp(f\(x),...,fn(x)) is again almost periodic.
This is not so obvious and uses the fact that there exists for every £ > 0 a relatively 

dense set of common translation numbers for/,...,/ corresponding to E.
The principal concept for the further development of the theory is the mean value of an 

almost periodic function f. Bohr proved that the number

has a limit as Ttends to infinity, even uniformly for a f R. This limits is called the mean 
value of/and is denoted . /Z{/}.

It is easy to see that. /d is a positive linear functional on . Z./'and if/> 0,/ =# 0 then 
. /d{f} > 0. If we put

(f,g) = • ^<fg) for fg e ■

then is a scalar product, turning. ZZ’into a pre Hilbert space with the norm 11/11 = 
V(ff). The exponentials eÅ 6 R defined by e^(x) = form an orthonormal family so 
.-Zy5 is a non-separable pre Hilbert space. It is not complete.

With f e . Z.Z’Bohr associated the orthogonal expansion

(5)

where a = (fiefi = . /d{f(x)e tXx}.
Sometimes Å —is called the Bohr transform off For any finite set A of real numbers 

Bessel’s approximation theorem yields

+
kA

(6)
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showing that only countably many of the numbers a*, Å 6 R are different from zero. 
Therefore, the orthogonal expansion (5) has only countably many non-zero terms; it is 
called the (almost periodic) Fourier series oj/The set S — {AeR|a #0} is called the spectrum 
off, and the numbers A 6 5' are called the frequences off

It is furthermore easy to see that the Fourier series of a periodic function/ coincides 
with the almost periodic Fourier series off

The theory developed so far is quite elementary. The importance of the theory was 
underlined by the following fundamental results, the proofs of which given by Bohr 
were long and difficult.

The theorems are:

(A) The uniqueness theorem.
If fg € .rF-/' have the same Fourier series then f = g. Equivalently R w ö maximal 
orthonormal system in . -/.SI

(B) Parseval’sformula.

IMI2l«Al2 forany

(C) The approximation theorem.
For f € . and £ > 0 there exists a trigonometric polynomial p of the form (4) such that
\f(x)—p(x)\ < £ for all x € R.

The theory outlined so far appeared in two long papers in Acta Mathematica from 
1924 and 1925, see [6],I,II, comprising more than 200 pages. The results had been 
announced in two notes in Comptes Rcndus de l’Academie des Sciences, Paris 1923, see 
[8].

The first Acta paper contains the proof of Theorem B, and Theorem A is an easy 
consequence of Theorem B. In the proof of Theorem B Bohr considered for T> 0 the 
piecewise continuous function /which is equal to f on [0, T[ and periodic with period 
T. By Parseval’s formula for periodic functions one has

J
 oo

l/wi2<fe= JXT
O n=-°°

where
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Via a very delicate analysis Bohr obtained the result by letting Tæ. In the second 
Acta paper Bohr proved the approximation theorem using periodic functions of infi
nitely many variables.

In 1927 Bochner gave the following very important characterization of almost 
periodic functions, cf. [4]:

A function f: R —> C is almost periodic if and only if it is continuous and the set of translates 
{f(x+a) \a e R} has compact closure in the uniform metric.

The importance of this result lies in the fact that the compactness characterization 
can be used as starting point for the more general theory of almost periodic functions on 
groups as developed by von Neumann in 1934. From Bochner’s result it is also obvious 
that the sum and product of almost periodic functions are again almost periodic.

Alternative proofs of the three fundamental theorems A, B, C were given shortly after 
Bohr’s work by many different mathematicians e.g. Bochner, de la Vallee Poussin, 
Weyl and Wiener. This demonstrates the enormous interest the theory raised.

In a third major paper in Acta Mathematica from 1926 ([6],III) Bohr studied 
analytic almost periodic functions and their corresponding Dirichlet series.

For the definition of this concept it is useful to introduce the notion of an equi-almost 
periodic family of continuous functions f: R —> C, thereby meaning that the set of 
common translation numbers for the functions in ./'corresponding to £ > 0 is relatively 
dense, i.e.

is relatively dense for any E > 0.

An analytic function/in a vertical strip a < x < ß in the complex plane is called 
almost periodic in the strip if the family ./= {f(x+iy) |x 6 ]<*,/?[} is equi-almost periodic 
as functions of y 6 R. It turns out that the functions in .7 have the same frequences (kf 
and that the Fourier coefficients

an (x) = . // {flx+iyje^}

have the form for a constant a 7 0, showing that the Fourier expansion has the 
form

f(x+iy)

called the Dirichlet expansion off
We shall not go further into the analytic almost periodic functions, which in a sense 

was the goal of Bohr’s investigations.
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3. The Bohr compactification
Let us consider the theory from another point of view.

The continuous group characters of the real line, i.e. the continuous homomor
phisms of (R,+) into (T, •), where

T={^eC| H = l},

are precisely the functions (^)AcR- The coarsest topology on R for which these functions 
e Å € R are continuous, is strictly coarser than the ordinary topology. We propose to 
call it the Bohr topology. With the Bohr topology the real line is organized as a topological 
group, and a basis for the neighbourhoods of zero is given by the following sets

= {reR| |?Å|T-1| < <V.,|Ar-l|< <5},

where m e N, 6 R and <5 > 0 are arbitrary.
The real line with the Bohr topology is not compact, not even locally compact, but it 

can be compactified. Let T be a copy of the circle group for each Å cR and let

be defined by
j(x) =

The product set is a compact group under the product topology. The mappings is 
clearly a homeomorphism of R with the Bohr topology onto the image JfR/ The 
closure of jßR.) is a compactification of R with the Bohr topology, called the Bohr 
compactification of R and denoted ßfRJ, i.e.

ß(R) =j(R),

which is a compact group. In the sequel we identify R andjfR/
By the approximation theorem an almost periodic function f: R —> C is uniformly 

continuous in the Bohr topology, and therefore it has a unique continuous extension F 
to the Bohr compactification. Conversely, ifF: ßCR) —* C is a continuous function on 
the compact group /3fRj, then it is uniformly continuous, and so is the restriction f of F 
to the real line with the Bohr topology. This means that for any £ > 0 there exists a 
neighbourhood of zero of the form [A,...,A ;d] such that

LÆ*+^~/Wl - £ for aI1 T 6
but this set is an ordinary neighbourhood of zero and relatively dense as is easily seen, 
so/is actually almost periodic.
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This shows that there is a one-to-one correspondence between the almost periodic 
functions of Bohr and the continuous functions on the Bohr compactification /3(R).

The Bohr compactification /3(R) can be described as the set of all characters of R, i.e. 
the set of all homomorphisms cp: R —> T. In fact, since ß(R) is the closure of the set of 
continuous characters, /3(R) consists of characters, and the fact that all characters 
belong to ßlR) is an easy consequence of Kroneckers’s theorem.

4. Harmonic analysis on locally compact abelian groups
Bohr’s theory of almost periodic functions has many resemblances with those of Fourier 
series and Fourier integrals. During the 1930’ies these three theories merged into a 
common theory called harmonic analysis on locally compact abelian groups. Many 
mathematicians contributed to this achievement e.g. Bochner, van Kampen, Pontrya
gin, Weil. The starting point was the theorem of Haar about the existence of an 
invariant measure on a locally compact group, now called Haar measure. With the 
publication in 1940 of Weil’s fundamental monograph [12] the theory became widely 
known although many simplifications and refinements have appeared since then.

To every locally compact abelian group G is associated a dual group ö. As a set 
ö concists of the continuous characters of G, i.e. the continuous homomorphisms y: 
G —> T. With pointwise multiplication and the topology of uniform convergence on 
compact subsets of G it turns out that ö is a locally compact abelian group. It is 
customary to write (x,y) in place of y(x) for x e G, y 6 ö.

For a continuous function f: G —>■ C with compact support the Fourier transform 
/■ (2 —* C is defined by

J(x) (x,y) dmG(x) for y 6 Ö,

and it is possible to choose the Haar measures mG and on G and G in such a way that 

(7)

for all such f This formula shows that the Fourier transformation f —> /has a unique 
extension to an isometry of L2 (G) onto L2 (ö).

For G = T we have 6' ~ Z andf(n) is the n’th Fourier coefficient, while (7) is Parseval’s 
formula.

For G = R we have (5 ~ R, /is the ordinary Fourier transform and (7) is Planchercl’s 
theorem.
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For G = ß(R) and an almost periodic function f: R —-> C with unique continuous 
extension F: ß(R) -> C to the Bohr compactification ß(H), it turns out that

i.e. the mean value of/is the Haar integral of the extension F. The dual group of ßfR) 
can be identified with R with the discrete topology, and = a., the Å’th Fourier 
coefficient, while (7) is Parseval’s formula, cf.(B) in §2.

Pontryagin’s duality theorem states that the dual group of ö can be identified with G, 
i.e. Cs ~ G.

Furthermore, for any locally compact abelian group G there is a Bohr compactifica
tion ß(G), which can be realized as the compact dual group of G considered as a discrete 
group. Again there is a one-to-one correspondence between continuous almost periodic 
functions on G and continuous functions on ß(G). The term Bohr compactification 
seems to have been introduced by Anzai and Kakutani in two papers from 1943, cf. [2].

5. Conclusion
We shall not attempt to describe the many generalizations and applications of the 
theory of almost periodic functions. The literature is enormous, cf. [13], and it would be 
an overwhelming task.

The other papers in this volume will shed some light on the various aspects of the 
subject and thereby show the richness and beauty of the theory initiated by Harald 
Bohr.

References

[1] Amerio, L., Prouse, G.: Almost-periodic functions andfunctional equations. New York: Van Nostrand 1971.
[2] Anzai, H., Kakutani, S.: Bohr compactifications of a locally compact group. I, II. Proc. Imp. Acad. Tokyo 

Vol. XIX (1943), 476-480, 533-539.
[3] Besicovic, A. S.: Almost-periodic functions, New York: Dover 1958.
[4] Bochner, S.: Beiträge zur Theorie der fastperiodischen Funktionen I. Teil: Funktionen einer Variab

len. Math. Annalen 96 (1927), 119-147.
[5] Bohr, H.: Bidrag til de Dirichlet’ske rækkers Theori. København: Gad 1910. For an English translation see 

Collected Mathematical Works, S 1.
[6] Bohr, H.: Zur Theorie der fast periodischen Funktionen. I-III. Acta Math. 45 (1924), 29-127, 46 

(1925), 101-214, 47 (1926), 237-281.
[7] Bohr, FL: Fastperiodische Funktionen. Berlin. Springer 1932.
[8] Bohr, H.: Collected Mathematical Works. Copenhagen: Danish Mathematical Society 1952.



24 MfM 42:3

[9] Bohr, H.: Matematiske arbejder med pædagogisk sigte. København: Dansk Matematisk Forening 1987.
[10] Corduneanu, C.: Almost periodic functions. New York: Interscience 1968.
[11] Maak, W.: Fastperiodische Punktionen, Berlin: Springer 1950.
[12] Weil, A.: ^integration dans les groupes topologiques et ses applications. Paris: Hermann 1940.
[13] Bibliography on Almost Periodic Functions, Compiled by G. H. Meisters for the years 1923 to 1958 with the 

assistance of P. O. Frederickson and A. M. Fink for the years 1959 to March 1987.
The entries are listed by year from 1923-1972 with Mathematical Reviews or Zentralblatt or Jahrbuch 

numbers. The years 1973 - March 1987 are by title only with a Mathematical Reviews number or a 
Carrent Mathematical Publication number. These include those items for which the words “almost 
periodic” or “quasi-periodic” appear in the title.

Copies of the bibliography for individual use are available from A. M. Fink, Mathematics Depart
ment, Iowa State University, Ames, Iowa 50011.

Matematisk Institut 
Universitetsparken 5 
2100 København 0 
Denmark


